Advantages for nitrocarburizing processes with post oxidation in continuous furnaces

Olaf Irretier, David Salerno
SAFED Suisse SA, CH - Delémont
www.safed.ch
Advantages for nitrocarburizing processes with post oxidation in continuous furnaces

Olaf Irretier, David Solerno

Due to typical nitrocarburizing processes Oxycad NT® – used nitriding and carburizing suitable gases, at temperatures between 530 to 750 °C – to create a compound and a underneath lying diffusion layer (Fig. 1).

Fundamentals of nitrocarburizing

Nitrocarburizing is a thermo-chemical heat treatment process which leads to an increased concentration of nitrogen and carbon in parts surface and a creating of a nitride enriched compound and diffusion layer.

In contrast to nitriding the main target of nitrocarburizing is to create a 5 to 25 μm “white compound layer” with optimized wear and corrosion resistance. In addition the corrosion resistance of a number of alloys can be raised significantly by 1/3nal postoxidizing.

In general nitrocarburizing – whether in gas, salt or plasma atmosphere – leads also to a reduction of frictional coefﬁcients, by high abrasion resistance.

Suitable nitrocarburizing layers distinguish thermal stability to nearly 500 °C and an improvement of strength characteristics. Due to the low temperatures compared to case hardening and the avoidance of martensitic hardening crystal lattice changes less residual stress are achieved with nitrocarburizing. According to materials composition a nitriding depth up to a few tenths millimetre is possible (Fig. 2).

Below compound layer the diffusion zone is suitable for supporting effects. Nitrides and carbides lead to hardness increase. The depth of the compound layer correlates to the thickness of the

Oxycad NT® is a heat treatment process newly developed by Safed Suisse and is based on the thermo-chemical diffusion processes – nitrocarburizing with postoxidation – and in special cases on a nal organic impregnation to increase corrosion resistance.

The following technical article shows, that Oxycad NT® combines the positive properties procedure signs of nitrocarburizing, i.e. increase of wear resistance by high surface hardness and reduced distortion. In addition the surface becomes dull black and the parts are mostly ready for installation.

Fig. 1: Oxycad NT® process

Fig. 2: Phase diagram Fe – N in dependence of carbon activity (due to Kunze)
by postoxidation (Fe$_3$O$_4$) which has an improved corrosion resistance result (Fig. 3).

Continuous furnace technology

The Oxycad NT® is specially developed for the continuous heat treatment processes in conveyor belt furnaces of bulk materials.

Safed – conveyor belt furnaces are equipped with a suitable measuring and control technology are suited for the optimum use and application – also due to the demands of AMS 2750 D and CQI9 (Fig. 4). These furnaces offer basically a high precision, reliability for reproduction and fulfill therefore the high demands of nitrocarburizing.

The special issues of this furnace technology are:
- Automatic, continuous filling of the conveyor belt furnace
- Fast heating up and high thermal transfer by circulation
- Steady control of the atmosphere composition.

The necessary gases are:
- air,
- ammonia (NH$_3$),
- methanol (CH$_3$OH),
- propane (C$_3$H$_8$)
- water H$_2$O.

Quenching takes place in oil. The final covering and closing of the pores is carried out with organic corrosion prevention (Fig. 5).

Nowadays the processes in the industrial furnaces allow as a rule generally a steady nitriding or nitrocarburizing of the essential material dimensions. Besides, the process observation and process regulation occurs through gas analyser, oxygen probe or nitriding probe.

diffusion layer. Basically, the more alloy elements are used for the nitriding, the higher the surface hardness, but the more slightly the thickness of the nitrocarburizing layer. An iron oxide layer is generated on the surface in addition
The process regulation by nitrifying coefficient K_n of Safed-conveyor belt type furnaces under flow arrangements and the application of a H$_2$ probe which is used to “in process supervision in-situ” and process documentation are „a state of the art“ technology” and have been proved in a huge number of applications by which process security and ability for reproduction of the heat treatment results were improved clearly.

In addition the gas consumption and therefore the operating expenses significantly which can amount by using of ammonia absolutely up to 30 %. This could be reduced by the regulated process guidance. Moreover, the regulation of the nitrifying coefficient K_n is the necessary base realise the exact requirement and chemical compositions of the nitriding layers.

Moreover, the process times can be minimised by a reproduceable creation of the nitriding layer. The continuous measurement of the furnace atmosphere (e.g. H$_2$) and the fed fresh gas, as well as the atmospheres and nitriding coefficient as well as the gap gas or hydrogen for the adaptation of the nitrining coefficient by e.g. automatic gas flow regulators is necessary for this.

Applications

With OxyCAD NT®-processes nearly all kind of steels, i.e. unalloyed as well as highly alloyed steels with more than 13 % of chromium which have a tendency of passivation can be heat treated.

Branches in which this process is used are for example automotive and aircraft industry, connection technology, electronics/electrical engineering, mechanical engineering, medicine industry and textile industry, military technology and tool industry.

Waves and bolts count, e.g., in general to the special applications for internal combustion engines and compressors, precision parts for optical devices, punching and forging parts to ball plug seaweeds or ball bolts, piston

Table 1: Layer composition and surface hardness of the test parts

<table>
<thead>
<tr>
<th>Material</th>
<th>Oxides</th>
<th>Layers</th>
<th>γ</th>
<th>Surface</th>
<th>Center</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μm</td>
<td>μm</td>
<td>$HV0.1$</td>
<td>$HV1$</td>
<td>HV</td>
</tr>
<tr>
<td>QSt 37</td>
<td><1</td>
<td>24</td>
<td>5</td>
<td>720</td>
<td>400</td>
</tr>
<tr>
<td>Fer</td>
<td><1</td>
<td>22</td>
<td>5</td>
<td>630</td>
<td>360</td>
</tr>
<tr>
<td>SPCC</td>
<td>1</td>
<td>21</td>
<td>7</td>
<td>530</td>
<td>360</td>
</tr>
<tr>
<td>550C</td>
<td>1</td>
<td>21</td>
<td>6</td>
<td>700</td>
<td>420</td>
</tr>
<tr>
<td>SK7</td>
<td>1</td>
<td>21</td>
<td>5</td>
<td>760</td>
<td>415</td>
</tr>
<tr>
<td>9SMnPb28</td>
<td>1</td>
<td>17</td>
<td>4</td>
<td>740</td>
<td>410</td>
</tr>
<tr>
<td>Csk5</td>
<td><1</td>
<td>17</td>
<td>9</td>
<td>600</td>
<td>450</td>
</tr>
<tr>
<td>C15</td>
<td><1</td>
<td>25</td>
<td>5</td>
<td>660</td>
<td>450</td>
</tr>
<tr>
<td>ASti 1080</td>
<td><1</td>
<td>26</td>
<td>2</td>
<td>625</td>
<td>540</td>
</tr>
<tr>
<td>C188</td>
<td>1</td>
<td>23</td>
<td>3</td>
<td>760</td>
<td>600</td>
</tr>
<tr>
<td>1883</td>
<td>1</td>
<td>23</td>
<td>3</td>
<td>760</td>
<td>600</td>
</tr>
<tr>
<td>19MnB4</td>
<td>1</td>
<td>22</td>
<td>3</td>
<td>770</td>
<td>580</td>
</tr>
<tr>
<td>Fe/MnCu/NiMo</td>
<td>1</td>
<td>17</td>
<td>2</td>
<td>..</td>
<td>240-380</td>
</tr>
<tr>
<td>Ovako225A</td>
<td><1</td>
<td>13</td>
<td>0</td>
<td>890</td>
<td>720</td>
</tr>
<tr>
<td>41C/V4</td>
<td><1</td>
<td>22</td>
<td>3</td>
<td>640</td>
<td>575</td>
</tr>
<tr>
<td>C75</td>
<td><1</td>
<td>19</td>
<td>4</td>
<td>830</td>
<td>450</td>
</tr>
<tr>
<td>50C/V4</td>
<td><1</td>
<td>19</td>
<td>4</td>
<td>780</td>
<td>500</td>
</tr>
</tbody>
</table>

Fig. 6: Blade for gras shears, 1.2357, 50CrMoV13-14, nitrocarburizing (OXYCAD®), postoxidation, final organic coating

Fig. 7: Drive pinion for camshaft, 1.7131, 16MnCr5, nitrocarburizing (OXYCAD®)

Fig. 8: Car seat components, 1.0301, C10, nitrocarburizing (OXYCAD®)
positive properties of nitrocarburizing,
i.e. increase of the surface hardness and high corrosion resistance.
Especially the increases in the corrosion resistance according to salt spray test this process is suited for a huge number of demands and shows an interesting alternative to combined procedure used in the past for heat treatment and galvanic technology.

The article shows that Oxycad NT® process has the following advantages:
- Optimisation of mechanical qualities and properties
- Optimisation of corrosion resistance: >300 h in the salt spray test are possible
- Substitute for other galvanic processes
- Less distortion
- Energy efficient and less of the operating expenses
- Black colouring of the surface

Nitrocarburizing does not lead to a crystal structure change, therefore dimension changes and distortion are substantially lower in comparison to case hardening.

Table 1 shows how the Oxycad NT® processes achieved test results. By variation of the process parameters the properties of the nitrocarburizing layers optimum for the uses were achieved: Oxide layer thickness (Fe₃O₄) of about 1 to 2 μm and a connecting nitrocarburizing layer thickness of approx. 5 to 25 μm with controlled porosity corresponding nitriding hardness depth (NHT) with 0.1 to 0.4 mm. The surface hardness in the series of experiments were between 500 in 1150 HV 0.5 (Fig. 9, 10 and 11).

The process temperatures opposed in the investigations were between 520 and 580 °C. Therefore it could be reached that according to material a surface hardness from up to 1250 HV appears. With wide increasing temperature the hardness of the nitriding layer decrease again (Fig. 12).

Conclusion
The test results have shown that Oxycad NT® on one side combines the very high wear and corrosion resistance which were treated in Oxycad NT® processes.
Plants and solutions for heat-treatment of precision and serial parts...

- **Mesh belt conveyor furnaces Type T9**: with muffle and integrated quenching tank. Compact plants with control and gas-supply board, particularly for small parts in the watch and micro-engineering industry. Offers high precision in the smallest spaces, reproducibility and fulfils the strictest metallurgical demands. Hardening, carburizing, carbonitriding.

- **Mesh belt conveyor furnaces Type T/TG**: with muffle and integrated quenching tank. This plant technology offers high precision, reproducibility and fulfils the strictest metallurgical demands. Hardening, carburizing, carbonitriding with oil or polymer quenching, bainite and martensitic hardening using salt-quenching, nitrocarburizing OXYCAD®.

- **Mesh belt conveyor furnaces Type TC/TCG**: without muffle, with integrated quenching tank. Besides the advantages of the production series T/TG, suitable above all for particularly large capacities. Hardening, carburizing, carbonitriding with oil or polymer quenching, bainite and martensitic hardening using salt-quenching, austempering.

- **Mesh belt conveyor furnaces Type Bd/BdT**: with air-circulation by means of turbines. Heated by gas or electricity. Heat treatment of steel and cast iron, tempering, annealing, stabilization, aging of aluminum. For Bd.T series with integrated water cooling tank.

- **Mesh belt conveyor furnaces Type Bd/L/BdT**: with muffle and cooling channel. Heated by gas or electricity. Bright hardening, bright annealing, sintering and annealing of iron, non-ferrous metals and stainless steel materials. Type Bd.T with integrated water cooling tank.

- **Mesh belt conveyor furnaces Type T/TG**: with muffle and integrated quenching tank. This plant technology offers high precision, reproducibility and fulfils the strictest metallurgical demands. Hardening, carburizing, carbonitriding.

- **Belt type washing machines Type TPAS**: loading the parts as bulk material or in a defined position (e.g. by robots). They run through the plant on a conveyor belt of stainless steel with several zones: washing, dephosphating, rinsing and drying with hot air. Configuration according to the application and the desired cleaning result. Optimal cleaning result, even for delicate parts.

- **Belt type washing machines Type TRAS**: Loading the parts as bulk material or in a defined position (e.g. by robots). They run through the plant on a conveyor belt of stainless steel with several zones: washing, dephosphating, rinsing and drying with hot air. Configuration according to the application and the desired cleaning result. Optimal cleaning result, even for delicate parts.

- **Rotary drum washing machines Type TRAS**: Loading the parts as bulk material, they run continuously through a drum of stainless steel with several zones: washing, dephosphating, rinsing and drying with hot air. Configuration according to the application and the desired cleaning result. Optimal cleaning result for flat and dipped parts.

- **Shaker hearth furnaces Type Vi**: with muffle and integrated quenching tank that are used primarily for very small parts with low production volumes. Hardening, carburizing, carbonitriding with oil or polymer quenching, bainite and martensitic hardening using salt quenching.

- **Retort furnaces Type SN/SL/SG**: with atmosphere circulation, also in evacuable configuration for heat treatment of charges. Austenitizing, carburizing, carbonitriding, tempering, annealing, preheating, heat treatment of light metals.

- **Integrated protective gas generators**: with a retort integrated in the furnace for methanol or natural gas dissociation for the production series T/TG or external vaporisers for the production series TC/TCG. Controlled and reproducible gas composition.

- **Stationary protective gas generators**: includes endothermic gas generators based on natural gas or propane as well as methanol and ammoniac dissociators.

- **Complete heat treatment lines**: consisting of loading device, hardening furnace, quenching in salt, oil or emulsion, washing machine before and after heat treatment, tempering furnace. Complemented with protective-gas generators and process control.

... for the following industry segments:
- Vehicles
- Watch and precision engineering
- Fasteners
- Bearings and semi-finished products
- Tools
- Knives and cutlery
- Furniture and wood industry
- as well as several additional applications
Plants and solutions for heat-treatment of precision and serial parts...

Complete heat treatment lines consisting of loading device, hardening furnace, quenching in salt, oil or emulsion, washing machine before and after heat treatment, tempering furnace. Complemented with protective-gas generators and process control.

Mesh belt conveyor furnaces Type T/TG
with muffle and integrated quenching tank. This plant technology offers high precision, reproducibility and fulfils the strictest metallurgical demands. Hardening, carburizing, carbonitriding with oil or polymer quenching, bainite and martensitic hardening using salt-quenching, nitrocarburizing OXYCAD®.

Mesh belt conveyor furnaces Type T9
with muffle and integrated quenching tank. Compact plants with control and gas-supply board, particularly for small parts in the watch and the micro-engineering industry. Offers high precision in the smallest spaces, reproducibility and fulfils the strictest metallurgical demands. Hardening, carburizing, carbonitriding.

Mesh belt conveyor furnaces Type T/PAS
Loading the parts as bulk material or in a defined position (e.g. by robots). They run through the plant on a conveyor belt of stainless steel with several zones: washing, dephosphating, rinsing and drying with hot air. Configuration according to the application and the desired cleaning result. Optimal cleaning result, even for delicate parts.

Mesh belt conveyor furnaces Type TC/TCG
without muffle, with integrated quenching tank. Besides the advantages of the production series T/TG, suitable above all for particularly large capacities. Hardening, carburizing, carbonitriding with oil or polymer quenching, bainite and martensitic hardening using salt-quenching, austempering.

Mesh belt conveyor furnaces Type Bd/BdT

Mesh belt conveyor furnaces Type Bd/L/BdT
with muffle and cooling channel. Heated by gas or electricity. Heat treatment of steel and cast iron, tempering, annealing, stabilization, aging of aluminum. For BdLT series with integrated water cooling tank.

Mesh belt conveyor furnaces Type TC/TCG
with muffle and integrated quenching tank. This plant technology offers high precision, reproducibility and fulfils the strictest metallurgical demands. Hardening, carburizing, carbonitriding with oil or polymer quenching, bainite and martensitic hardening using salt-quenching, nitrocarburizing OXYCAD®.

Retort furnaces Type SN/SL/SG
with atmosphere circulation, also in evacuable configuration for heat treatment of charges. Austenitizing, carburizing, carbonitriding, tempering, annealing, preheating, heat treatment of light metals.

Integrated protective gas generators
with a retort integrated in the furnace for methanol or natural gas dissociation for the production series T/TG or external vaporisators for the production series TC/TCG. Controlled and reproducible gas composition.

Stationary protective gas generators
includes endothermic gas generators based on natural gas or propane as well as methanol and ammoniac dissociators.

Retort furnaces Type Vi
with muffle and integrated quenching tank that are used primarily for very small parts with low production volumes. Hardening, carburizing, carbonitriding with oil or polymer quenching, bainite and martensitic hardening using salt quenching.

Complete heat treatment lines consisting of loading device, hardening furnace, quenching in salt, oil or emulsion, washing machine before and after heat treatment, tempering furnace. Complemented with protective-gas generators and process control.

Integrated protective gas generators
with a retort integrated in the furnace for methanol or natural gas dissociation for the production series T/TG or external vaporisators for the production series TC/TCG. Controlled and reproducible gas composition.

Stationary protective gas generators
includes endothermic gas generators based on natural gas or propane as well as methanol and ammoniac dissociators.

Rotary drum washing machines Type TRAS
Loading the parts as bulk material, they run continuously through a drum of stainless steel with several zones: washing, dephosphating, rinsing and drying with hot air. Configuration according to the application and the desired cleaning result. Optimal cleaning result for flat and dipped parts.

Belt type washing machines Type TPAS
Loading the parts as bulk material or in a defined position (e.g. by robots). They run through the plant on a conveyor belt of stainless steel with several zones: washing, dephosphating, rinsing and drying with hot air. Configuration according to the application and the desired cleaning result. Optimal cleaning result, even for delicate parts.

... for the following industry segments:
- Vehicles
- Fasteners
- Bearings and semi-finished products
- Tools
- Knives and cutlery
- Furniture and wood industry
- as well as several additional applications

Plants and solutions for heat-treatment of precision and serial parts...
Typical OXYCAD® NT heat treatment line

SAFED Suisse SA
36, Rue Emile-Boéchat
CH - 2800 Delémont
Phone (+41) (32) 421 44 60
Fax (+41) (32) 421 44 64
contact@safed.ch

SAFED Industrieöfen GmbH
Robert-Bosch-Straße 4
D - 73463 Westhausen
Phone (+49) (7363) 50 71
Fax (+49) (7363) 50 73
contact@safed.de

SAFED FRANCE
Fours Electriques de Besançon
F - 25004 Besançon Cedex
Phone (+33) (381) 48 37 00
Fax (+33) (381) 53 45 93
contact@safed.fr

SAFED AICHELIN s.r.l.
Via E. D’Adda, 2
I - 22066 Mariano Comense (CO)
Phone (+39) (031) 750 640
Fax (+39) (031) 750 803
contact@safed.it

AICHELIN Ges.m.b.H.
Postfach 210
A-2340 Mödling
Phone (+43) (2236) 236 46 - 0
Fax (+43) (2236) 22 229
marketing@aichelin.com

http://www.aichelin.com

Subject to technical changes.
SAFED is registered trademark of SAFED Suisse SA

http://www.safed.ch